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Abstract 

Acceptance Sampling models have been widely applied in companies for the inspection and testing of the raw materials as 
well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to 
inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer 
confirming that the items in the lots are according to the required specifications so that they can make appropriate decision 
based on the results obtained by testing the samples. Acceptance sampling plans are practical tools for quality control 
applications which consider quality contracting on product orders between the vendor and the buyer. Acceptance decision is 
based on sample information. In this research, dynamic programming and Bayesian inference is applied to decide among 
decisions of accepting, rejecting, tumbling the lot or continuing to the next decision making stage and more sampling. We 
employed cost objective functions to determine the optimal policy. First, we used the Bayesian modelling concept to 
determine the probability distribution of the nonconforming proportion of the lot and then dynamic programming was utilized 
to determine the optimal decision. Two dynamic programming models have been developed. The first one is for the perfect 
inspection system and the second one is for imperfect inspection. At the end, a case study is analysed to demonstrate the 
application the proposed methodology and sensitivity analyses are performed. 
Keywords:  Acceptance Sampling, Bayesian Inference, Dynamic Programming, Inspection Errors, Quality Cost. 

1. Introduction 

Acceptance Sampling models have been widely applied in 
companies for the inspection and testing of the raw 
materials as well as the final products. A number of lots 
of the items are produced in a day in the industries, so it 
may be impossible to inspect/test each item in a lot. The 
acceptance sampling models only provide the guarantee 
for the producer and the consumer confirming that the 
items in the lots are according to the required 
specifications so that they can make appropriate decisions 
based on the results obtained by testing the samples. 

In this paper, an optimization model is developed 
for acceptance sampling plan. The proposed approach is 
based on dynamic programming and Bayesian inference. 
In deterministic dynamic programming, given a state and 
a decision, both the immediate payoff and next state are 
known. If we know either of these only as a probability 
function, then it is modelled as stochastic dynamic 
programming. The method of obtaining stages, states, 
decisions, and recursive formula does not differ. A  

 

 
 
 

 
stochastic dynamic programming has the same approach 
of a deterministic one, but only the state transition 
equation differs. The acceptance sampling problem may 
be modelled as a dynamic programming problem when 
different sampling stages are available. States of the lot 
may be defined by the results of the inspection. The lot 
state is defined as the expected value of nonconforming 
proportion. The probability distribution function of 
nonconforming proportion is obtained using the Bayesian 
inference. Therefore, the lot state is assumed to be known 
at each stage and the probability density function of 
nonconforming proportion is determined at the beginning 
of each stage after sampling the new data.  

The state of the lot at the beginning of the next 
stage depends only on our current decision (tumbling or 
more sampling). The lot can be tumbled a constant cost. 
Tumbling will bring the lot to some better state in the next 
stage and it decreases lot state (nonconforming 
proportion) with a constant factor. There is also a state-
dependent cost of decisions about accepting and rejecting 
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otherwise.  

2. The Model 

A dynamic programming algorithm will examine all 
possible methods to solve the problem and will select the 
optimal solution; therefore, dynamic programming 
enables us to go through all possible solutions to select 
the best one. Stochastic dynamic programming is a 
technique to model a sequential decision making process 
in a stochastic environment (Ross, 1983). In acceptance 
sampling plans, we are selecting between decisions of 
continuing (tumbling the lot or continuing to the next 
decision making stage and more sampling)  or stopping 
(accepting or rejecting the lot) thus it is a type of optimal 
stopping problem that can be generalized in order to 
consider all decisions. 

Dynamic programming technique can be employed 
to design an optimal sequential acceptance sampling plan 
when the following conditions exist: 

i) The cost of accepting a nonconforming item and 
cost of rejecting a conforming item can be reasonably 
assessed. 

ii) The proportion of nonconforming items is stable 
and constant or its probability distribution is known. 

The most powerful method of acceptance sampling 
plans is sequential acceptance sampling model. A 
recessive approach was used to design these models. On 
the other hands dynamic programing models are solved 
based on the recessive approach, therefore we use from 
the dynamic programming to develop a sequential 
sampling models. 

In this paper we impose mandatory fixed sample 
sizes in each sampling stage. We let the dynamic 
programming mechanism dictate the optimal policy based 
on the current state of the system.  

 However, before doing so, first we need to have 
some notations and definitions. 

2.1.  Notations and Definitions 

We will use the following notations and definitions 
in the rest of the section: 
p : The proportion of nonconforming items. 

Referring to Jeffrey’s prior (Nair et. al. (2001)), for 
the nonconforming proportion p, we take a Beta prior 
distribution with parameters 0.5  and 0.5 . By use of the 
Bayesian inference, we can easily show that the posterior 
probability density function of p  is 

0.5 0.5( 1)
( ) (1 )

( 0.5) ( 0.5)
f p p p  

 
   

 
   

              (1) 

Where,  is the number of nonconforming items and   
is the number of conforming items in the past stages of 
the decision- making process.  

N : The total number of items a lot. 

aC : The cost of accepting one nonconforming item when 
the lot is accepted. 

sC : The cost of one nonconforming item which is 
detected during inspection. 
T : The cost of tumbling process. 
I : The cost of inspecting one item during decision of 
inspecting all items in lot. 
 : The coefficient of decreasing detective proportion 
after improving lot quality (Tumbling). 
m : The sample size in each stage of decision making. 
 : The discount factor in stochastic dynamic 
programming approach. 

( )nV p : The cost associated with p when there are n
remaining stages to make the decision. 
 
Following assumptions are made to design the proposed 
sampling plan, 
 The inspections are perfect. 
 A tumbling operation can be performed on lot. 

The tumbling operation can be expected to 
eliminate 1   percentage of the 
nonconforming items. 

 The objective function minimizes the summation 
of quality costs. 

 Bayesian inference is used to update the 
proportion of nonconforming items. 

 Dynamic programming is used to find the 
optimal policy. 

 We can select the optimal policy among decision 
of accepting, rejecting, tumbling the lot or 
continuing to the next stage and taking more 
samples. 

2.2. Derivations 

We may model an acceptance sampling process as an 
optimal stopping problem in which in each stage of the 
decision-making process, we take a sample from a lot and 
based on the information obtained from the sample we 
want to decide whether to accept or to reject the lot or 
continuing to take more samples. 

The state variable and stage variable of dynamic 
programming model is as follows, 
 State variable: The expected value of 

nonconforming proportion. The probability 
distribution of nonconforming proportion is 
obtained by sampling. 

 Stage variable: The stage of sampling. It is 
assumed that there are maxn decision making 
stages. 

We mentioned that the probability distribution of the 
nonconforming proportion ( )p could be modelled by the 
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The second equality is defined based on constant sample 
size in each stage. Therefore the values of parameters 

' , '   can be determined based on the values of 
parameters ,   . 

Now we can evaluate the value of function 
( ( ))nV E p based on the value of   1 EnV p  and 

  1 1EnV p p   where   1 .nV E  can be obtained 
using equation (2) recursively thus it is concluded that the 
value of ( ( ))nV E p  can be determined based on the 

values of  0 (.)V E  by continuing this recursive method. 

Also the value of  0 (.)V E  can be determined by 
equation (7). Steps of dynamic programming have been 
shown in Fig (1). 

 

In the next section, a case study is given to illustrate the 
application of the proposed methodology. 

3. Case Study 

Assume a juice production industry has produced a lot of 
100N   items. The amount of vitamin C in juice is 

inspected through experimenters. According to the 
presented approach, first a sample of items is inspected. 
Also three decision making stages are available for 
deciding about the lot. The sample size in each stage of 
decision making is 10m  . Assume that  stages are 
available for decision making process and at the start of 
process, 10 juices are inspected where the number of 
nonconforming juices is 2   and the number of 
conforming juices is 8   in the first sample and the 

cost of accepting one nonconforming juice is 4aC  , 
the cost of one nonconforming juice which is detected 
during inspection is 2sC  , the cost of inspecting one 

item is 1I  , the cost of tumbling process is 150T  , 
the coefficient of decreasing nonconforming proportion in 

tumbling process is 95%   and the discount factor in 
stochastic dynamic programming approach is 0.9  . 

According to dynamic programming approach 
when three decision making stages is available ( 3)n  , 
we have : 

  
   

  
  

3 1

3 1 1

3

,  ,

 E ,

 E

s aNI C NE p C NE p

mI V p

T V p p

V E p Min 

 








 

 
 

  
 
 

 2 ( )V E p  can be calculated using recursive equation 
when two decision making stages is available, on the 
other hand we have : 

 
   

  
  

2 2 1

2 1 1

,  ,

( )  ,

  

s aNI C NE p C NE p

V E p Min mI V E p

T V E p p



 




 
    
 

   
Now we can recursively determine  1 ( )V E p  as 
follow: 

 
   

  
  

1 1 1

1 1 1

,  ,

( )  ,

  

s aNI C NE p C NE p

V E p Min mI V E p

T V E p p



 




 
    
 

   
Also we need to obtain    2

1 2 1V E p p p    for 

calculating the item   2 1V E p p  and then we 

need to determine   1 2
0 2 1V E p p p    and the 

function   2 3
0 3 2 1V E p p p p      which are 

obtained by equation (6). 

Fig. 1. Diagram of Dynamic Programming’s steps  
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Table 6 
 Sensitivity analysis  

cases ( , , , , , , , , , )a sN C C T I m     Optimal policy  3 ( )V E p  

1. Case study (100, 4,2,150,1,0.95,10,0.9, 2,8)  Accept 90.9091 

2. Increases N  (3422, 4, 2,150,1,0.95,10,0.9,2,8)  Continue to the next 
decision making stage 2538.836 

3. Increases N  (3423, 4, 2,150,1,0.95,10,0.9, 2,8)  Tumble the lot 2539.544 

4. Increases
aC  (100,5, 2,150,1,0.95,10,0.9,2,8)  Continue to the next 

decision making stage 166.2727 

5. Decreases
sC  (100, 4,0.53,150,1,0.95,10,0.9, 2,8)  Continue to the next 

decision making stage 88.48381 

6. Decreases T  (100, 4, 2,13,1,0.95,10,0.9, 2,8)  Tumble the lot 90.722773 

7. Decreases I  (100, 4, 2,150,0.5,0.95,10,0.9, 2,8)  Continue to the next 
decision making stage 83.13636 

8. Decreases   (100, 4,2,150,1,0.25,10,0.9, 2,8)  Tumbling 46.54983 

9. Decreases   (100, 4,2,150,1,0.95,10,0.5, 2,8)  Continue to the next 
decision making stage 34.02635 

  
A sensitivity analysis is performed on the 

parameters of the problem that results have been 
summarized as following:  

 By comparing cases one, two and three, it is seen 
that when the total number of items in a lot  N  is 
less than 3422 units, then the optimal decision in the 
proposed method is to continue to the next decision 
making stage, and when the total number of items in 
a lot  N  is more than 3423 units, then the optimal 
decision in the proposed method is to tumble the lot.  

 By comparing case one and case six, it is seen that 
when the cost of tumbling process  T  is less than 
13, then the optimal decision in the proposed method 
is to tumble the lot. 

 The result of the proposed model in all cases is 
reasonable. For example, cost of proposed model 
increases by increasing cost parameters of the model 
and it decreases by decreasing different costs of the 
model and the corresponding optimal decision are 
made in accordance with the variations. 

4.1. Sensitivity analysis of “ aC  with sC   ”: 

Results for Simultaneous variations of cost of 
accepting one nonconforming item  aC  and the cost of 

one detected nonconforming item  sC are denoted in  
 
 
 

 Table 7 

 Sensitivity analysis of variations of “ aC and sC ” 

N.O of Cases optimal policy 

a sC C 
 

Accept the lot 

a sC C 
 

Tumbling 

a sC C 
 

Continue to the next decision 
making stage 

a sC C 
 

Accept the lot 

 
The results of Table 7, confirms the reasonable 

performance of dynamic programming model in the 
encountering with the variation of cost parameters. 

 
4.2. Sensitivity analysis of “ : the number of 

nonconforming items, : the number of conforming 
items”: 

The results of changing   and   are denoted in 
Table 8. It is seen that when the nonconforming 
proportion p 

 
 

  
 is approximately equal or less 

than 0.31, then optimal policy is to accept the lot, when 
the nonconforming proportion is more than 0.31, then 
optimal policy is to continue to the next decision making 
stage therefore sampling continues. When the 
nonconforming proportion is more than 0.67 then the 
optimal decision is to reject.  Thus, it is observed that the 
optimal policy is a type of control threshold policy. 
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5.  The Presence of Inspection Error 

In this section, a dynamic programming model is 
developed for acceptance sampling problem in the 
presence of inspection errors. There are two types of 
inspection errors: 1. The first type of error 2. the second 
type of error. 

We may model an acceptance sampling process as 
an optimal stopping problem. First, we take a sample from 
a lot in each stage of the decision-making process and the 
objective is to decide whether to accept, to reject and 
inspect all items, to tumble the lot, or to continue 
sampling based on the information obtained from the 
sample. 

We mentioned that the probability distribution of the 
nonconforming proportion ( )p could be modelled by the 
Bayesian inference as a Beta distribution with parameters

 0.5  , 0.5   . But ( )p denotes the 
nonconforming proportion obtained by imperfect 
inspection, thus its value is different from the true 
nonconforming proportion. Following notations are used 
in the rest of this paper; 
p : The apparent nonconforming proportion (its value is 

obtained by imperfect inspection). 
*p : True proportion of nonconforming. 

Tp : The apparent proportion of nonconforming items in 
the tumbled lot.  

*
Tp : True proportion of nonconforming items in the 

tumbled lot.  

rC : The cost of rejecting one conforming item. 

S : The cost of inspecting one item during sampling. 

1I : The probability of first type error in inspecting one 
item. 

2I : The probability of second type error in inspecting one 
item. 

If we define n to be the index of the decision-
making stage and *( )E p  to be the state variable, then 
the cost functions of different decisions can be obtained as 
follows: 

1

* * *

2 1 2 2

*

2 1 2 1 2

3

1) for accepting the lot         

2) for rejecting the lot and inspecting all items in the lot

(1 ) (1 )

( (1 ))

3) for tumbling the lot

a

r a s

r a r s

a C N

a NI NI C p NI C p C N I p

a NI NI C NI C NI C C N I p

a T 



      

     

  *

1 T

*

4 1

continuing to the next decision 

making stage and more sampli

( )

4) for

(

ng

)

n

n

V p

a ms V p



 

     

(9) 
It is assumed that when the lot is rejected then all 

items are inspected and three types of cost are incurred. 
These costs are as follows, 

1. *
2 aNI C p  : The cost of accepting one 

nonconforming item multiplied by second type 
error probability, 2I  (Probability of accepting one 
nonconforming item). 

2. *
2(1 )sC N I p : The cost of one detected 

nonconforming item during inspection multiplied 
by probability of detecting a nonconforming item, 

21 I  (Probability of rejecting one nonconforming 
item). 

3. *
1 (1 )rNI C p : The cost of rejecting one 

conforming item multiplied by first type error 
probability, 1I  (Probability of rejecting one 
conforming item).  

*Np  is the number of nonconforming items in the 

lot. True value of nonconforming proportion ( *p ) 
is determined using conditional probability as 
follows, 
 
 
 
 
 
 
 
 
 

item is categorized
p pr

as

item is categorized
pr

item is item is
pr

nonconforming conforming conforming

item is item is
pr

nonconforming nonconforming nonconfs or inga m





      
      
      

      
      
      

                                                               (10) 
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one stage then the nonconforming proportion in the next 
stage decreases form *p  to *p  where 0 1  .  

We characterize properties of the value function 
using a method for approximating the function 

  -1 .nE V  in order to consider the probability 
distribution function of p  in computations thus 
following approximation is applied, 

     * *
0 0V E p E V p                                     (17) 

Since function *
0 ( )V p  is obtained using equation 

(18) thus   *
0E V p can be obtained using equation 

(19), 
*

1
*

0 2 1

*
2 1 2

,
( )  

( (1 ))

a

r

a r s

a C Np
V p Min a NI NI C

NI C NI C C N I p

 
     
    

                     (18) 

hence *
0 ( ( ))V E p  can be obtained as follows: 

  

    

   

   

* 1

2 1 2

* 1

2 1 2

*
1 2 1 2

( (1 ))

* *
0 0

*

( (1 ))

( (1 ))  

( )

 

r

a a r s

r

a a r s

r a r s
I I Cp

C I C I C C I

a
I I Cp

C I C I C C I

N I I C I C I C C I p f p dp

V E p E V p

C Np f p dp




   




   

     
 
 
    
 
 
  





                    (19) 

Since,
 * 1

1 21
p Ip
I I



 

,                                                                                                                                                           (20) 

thus  0 ( )V E p  is obtained as follows:  

 

 
 

 
 

1
1 2 2

2 1 2

1
1 2 2

2 1 2

*
0

1
1 2 1 2

1 2
1

( (1 ))

1

1 2
1

( (1 ))

 

 

( )

( (1 ))
1

1

r

a a r s

r

a a r s

r a r s
I I Cp I I I

C I C I C C I

a
I I Cp I I I

C I C I C C I

V E p

p IN I I C I C I C C I f p dp
I I

p IC N f p dp
I I

 
  
 

 
  
 

   
   

   
   

  
  
  
 


    
  

 



    
 




 












      

(21) 

  
When  0n   stages are available then we must select between decisions of accepting or rejecting the lot, thus 

following strategy is obtained for single stage model: 

 
 

* *
1 2 1 2 0 1

* *
1 2 1 2 0 2

( (1 )) ( ) ( ) Accept
0

( (1 )) ( ) ( ) Reject

r a r s a

r a r s a

N I I C I C I C C I E p C NE p V a
n

N I I C I C I C C I E p C NE p V a

             
                                             

(22) 

It is necessary to determine   1 .nV E recursively to 
solve dynamic model in equation (14). To evaluate 
equation (21), the probability distribution function of 
random variable Tp  is needed. This function is 

determined using a heuristic approach. Since Tp  is the 
apparent nonconforming proportion of the lot in the 
imperfect inspection process thus we assume that Tp  

follows a Beta distribution with parameters ", "   . The 
approximate values of parameters ", "  can be 
determined using the equation (27). To explain this 
heuristic method, first we have, 
 T Mean of Beta distribution 

"
with parameters ", "

" "

E p


 

 






.                         (23) 
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Table 9 

The results of  .E  

 E p  0.22727 

 *E p
 

0.20855 

   * *
TE p E p  0.19812 

     * * 2 *
T2 TE p E p E p    0.18822 

     
   

* * 2 *

T3 T2 T

* 3 *

T3

E p E p E p

E p E p

 



  


 0.17881 

 
Table 10 

Results of  *( )
n

V E p
 

n=0  *

0 ( )V E p  103.522 

n=1 

 *

aC NE p  125.133 

*

1 2 1 2
( (1 )) ( )

r a r s
NI NI C NI C NI C C N I E p      119.839 

 *

0 T( )T V E p  190.140 

 *

0 ( )ms V E p  103.169 

 *

1 ( )V E p  103.169 

n=2 

 *

aC NE p  125.133 

*

1 2 1 2
( (1 )) ( )

r a r s
NI NI C NI C NI C C N I E p      119.839 

 *

1 T
( )T V E p  190.126 

 *

1
( )ms V E p  102.852 

 *

2
( )V E p  102.852 

n=3 

 *

a
C NE p  125.133 

*

1 2 1 2
( (1 )) ( )

r a r s
NI NI C NI C NI C C N I E p      119.839 

 *

2 T
( )T V E p  190.114 

 *

2
( )ms V E p  106.738 

 *

3
( )V E p  106.738 

 *

0 T2
( )T V E p  187.26 

 
 

 

 
 

*

1

2 1

2 1
*

*1
2

*

3 0 T

*

4 0

( )

(
( )

(1 )) ( )

( )

( )
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a C NE p

a NI NI C

NI C NI C
V E p Min

C N I E p

a T V E p

a ms V E p







  

 

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 

 

 
 
 
  
 
 
 
 
  

 

 
The calculations are reported in Tables (9-10). 
Considering Tables (9-10), the optimal policy is to 
continue to the next decision making stage and more 
sampling when three stages are available. In the next 
section, sensitivity analysis is performed on different 
parameters. 

 

7. Sensitivity analysis of extended Model  

Results of sensitivity of analysis are shown in Table (11). 
A sensitivity analysis is performed on the parameters of 
the problem that results have been explained in following:  
 
 All results coincide with the type of variations. For 
example, increasing the cost of one decision leads to not 
selecting this decision as optimal. 

 It is seen that when the total number of items in a lot 

 N  decreases, then the optimal policy in the proposed 
method is to reject the lot, and when the total number of 
items in a lot  N  becomes more than 3800 units, then 
the optimal decision in the proposed method is to tumble 
the lot.  

 It is seen that when the probability of first type error 
in inspecting one item  1I  increases, then the optimal 
decision in the proposed method is to accept the lot. This 
action is logical because when the probability of first type 
error in inspecting one item increases, then it’s better to 
accept the lot because first type error is the probability of 
incorrect rejection of an acceptable item. 

7.1. Sensitivity analysis of changing cost parameters 

Simultaneous variations of the cost of accepting one 
nonconforming items  aC , the cost of one detected 

nonconforming items  sC  and the cost of rejecting one 

conforming items  rC  are investigated and the results 
are denoted in Table 12. The results show the valid and 
logical performance of the proposed method. 
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Table 13 
Sensitivity analysis of “ and  ” 

m=9 

  1 

  8 

p  0.11 

optimal 
policy Accept 

m=10 

  1 a 2   3   4 

  9 b 8   7   6 

p  0.10 p 0.20 p  0.3 p  0.40 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue 

m=11 

  1   2 a 3   4 

  10   9 b 8   7 

p  0.09 p  0.18 p 0.27 p  0.36 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Continue optimal 

policy Continue 

m=12 

  1   2   3   4 

  11   10   9   8 

p  0.08 p  0.17 p  0.25 p  0.33 

optimal 
policy Accept optimal 

policy Accept optimal 
policy Continue optimal 

policy Continue 

m=13 

  2   3   4   5 

  11   10   9   8 

p  0.15 p  0.23 p  0.31 p  0.38 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue 

m=14 

  2   3   4   5 

  12   11   10   9 

p  0.14 p  0.21 p  0.29 p  0.36 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue 

m=15 

  2   3 a 4   5   6 

  13   12 b 11   10   9 

p  0.13 p  0.2 p 0.27 p  0.33 p  0.40 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Reject optimal 

policy Continue optimal 
policy Continue 

m=16 

  3   4 a 5   6   7 

  13   12 b 11   10   9 

p  0.18 p  0.25 p 0.31 p  0.37 p  0.43 

optimal 
policy Accept optimal 

policy Continue optimal 
policy Continue optimal 

policy Continue optimal 
policy Reject 

 

8. Conclusions 

In this paper, we developed two optimization models for 
acceptance sampling plan. The first model is written for 

the cases that inspection is perfect and the second one 
considers inspection errors in the model. It is observed 
that the obtained dynamic model can be solved 
recursively using a heuristic method.  To achieve this 
goal, we used a dynamic programming model and 
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