Multi-response Optimization of Grooved Circular Tubes Filled with Polyurethane Foam as Energy Absorber

Document Type: Original Manuscript

Authors

1 Faculty of Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.

2 Department of Mechanical Engineering, Faculty of Engineering, Semnan Branch, Islamic Azad University, Semnan, Iran.

3 Department of Industrial Engineering, Faculty of Engineering, Semnan Brach, Islamic Azad University, Semnan, Iran

10.22094/joie.2018.764.1487

Abstract

The main objective of this research is to improvethe design and performance of the polyurethane foam-filled thin-walled aluminum grooved circular tubes using multi-response optimization (MRO) technique. The tubes are shaped with the inner and the outer circular grooves at different positions along the axis. For this aim, several numerical simulations using ABAQUS finite element explicit code are performed to study the energy absorption of these structures. The effects of the grooves distance, tube diameter, grooves depth, foam density, and tube thickness are investigated onthecrashworthiness parameters of grooved circular tubes. Finite-element analysis is performed along the lines defined by design of experiments (DOE) technique at different combinations of the design parameters. The MRO is carried out using the mathematical models obtained from response surface methodology (RSM) for two crashworthiness parameters termed as the specific energy absorption (SEA) and the crushing force efficiency (CFE). Finally, by analyzing all the design criteria including theabsorbed energy of tube, themass of tube, the mean crushing load, and the maximum crushing load, the optimal density of polyurethane foam and geometric parameters were obtained through both multi-objective optimization process and Pareto diagram. A comparison of the obtained results indicates the significance of grooves distance and the inner diameter of thetube as the most influential parameters.

Graphical Abstract

Multi-response Optimization of Grooved Circular Tubes Filled with Polyurethane Foam as Energy Absorber

Keywords

Main Subjects


Ashby, M. F., & Medalist, R. M. (1983). The mechanical properties of cellular solids. Metallurgical Transactions A, 14(9), 1755-1769.

Avalle, M., Belingardi, G., & Ibba, A. (2007). Mechanical models of cellular solids: parameters identification from experimental tests. International Journal of Impact Engineering, 34(1), 3-27.

Avalle, M., Belingardi, G., & Montanini, R. (2001). Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. International Journal of Impact Engineering, 25(5), 455-472.

Bahraminasab, M., Sahari, B. B., Edwards, K. L., Farahmand, F., Hong, T. S., Arumugam, M., & Jahan, A. (2014). Multi-objective design optimization of functionally graded material for the femoral component of a total knee replacement. Materials & Design, 53, 159-173.

Damghani Nouri, M., & Rezvani, M. J. (2012). Experimental Investigation of Polymeric Foam and Grooves Effects on Crashworthiness Characteristics of Thin-Walled Conical Tubes. Experimental Techniques, no-no. doi:10.1111/j.1747-1567.2012.00825.x

Daneshi, G. H., & Hosseinipour, S. J. (2002). Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression. Materials & design, 23(7), 611-617.

Eyvazian, A., K. Habibi, M., Hamouda, A. M., & Hedayati, R. (2014). Axial crushing behavior and energy absorption efficiency of corrugated tubes. Materials & Design, 54, 1028-1038. doi:10.1016/j.matdes.2013.09.031

Hanssen, A., & Langseth, M. (1996). Development in aluminium based crash absorption components. Paper presented at the Norwegian–French Industrial Conference, Paris.

Hanssen, A., Langseth, M., & Hopperstad, O. (1999). Static crushing of square aluminium extrusions with aluminium foam filler. International Journal of Mechanical Sciences, 41(8), 967-993.

Hanssen, A. G., Langseth, M., & Hopperstad, O. S. (2000). Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. International Journal of Impact Engineering, 24(5), 475-507.

Hosseinipour, S., & Daneshi, G. (2004). Experimental studies on thin-walled grooved tubes under axial compression. Experimental mechanics, 44(1), 101-108.

Hosseinipour, S. J., & Daneshi, G. H. (2003). Energy absorbtion and mean crushing load of thin-walled grooved tubes under axial compression. Thin-Walled Structures, 41(1), 31-46. doi:10.1016/s0263-8231(02)00099-x

Hosseinipour, S. J., & Daneshi, G. H. (2004). Experimental studies on thin-walled grooved tubes under axial compression. Experimental mechanics, 44(1), 101-108.

Jahan, A., Ismail, M. Y., & Noorossana, R. (2010). Multi response optimization in design of experiments considering capability index in bounded objectives method. Journal of Scientific & Industrial Research, 69, 11-16.

Marzbanrad, J., & Ebrahimi, M. R. (2011). Multi-Objective Optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks. Thin-Walled Structures, 49(12), 1605-1615. doi:10.1016/j.tws.2011.08.009

Mirzaei, M., Shakeri, M., Sadighi, M., & Seyedi, S. (2011). Multi-objective optimization of crashworthiness of cylindrical tubes as energy absorbers. Iranian Journal of Mechanical Engineering (English), 12(1), 5-18.

Niknejad, A., Abedi, M. M., Liaghat, G. H., & Zamani Nejad, M. (2012). Prediction of the mean folding force during the axial compression in foam-filled grooved tubes by theoretical analysis. Materials & Design, 37, 144-151. doi:10.1016/j.matdes.2011.12.032

Reid, S., Reddy, T., & Gray, M. (1986). Static and dynamic axial crushing of foam-filled sheet metal tubes. International Journal of Mechanical Sciences, 28(5), 295-322.

Rezvani, M., Nouri, M. D., & Rahmani, H. (2012). Experimental and numerical investigation of grooves shape on the energy absorption of 6061–T6 aluminium tubes under axial compression. International Journal of Materials and Structural Integrity, 6(2), 151-168.

Rezvani, M. J., & Nouri, M. D. (2013). Axial Crumpling of Aluminum Frusta Tubes with Induced Axisymmetric Folding Patterns. Arabian Journal for Science and Engineering, 39(3), 2179-2190. doi:10.1007/s13369-013-0734-7

Rezvani, M. J., Nouri, M. D., & Rahmani, H. (2012). Experimental and numerical investigation of grooves shape on the energy absorption of 6061-T6 aluminium tubes under axial compression. International Journal of Materials and Structural Integrity, 6(2), 151-168.

Salehghaffari, S., Rais-Rohani, M., & Najafi, A. (2011). Analysis and optimization of externally stiffened crush tubes. Thin-Walled Structures, 49(3), 397-408.

Seitzberger, M., Rammerstorfer, F. G., Gradinger, R., Degischer, H., Blaimschein, M., & Walch, C. (2000). Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. International Journal of Solids and Structures, 37(30), 4125-4147.

Shakeri, M., Mirzaeifar, R., & Salehghaffari, S. (2007). New insights into the collapsing of cylindrical thin-walled tubes under axial impact load. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(8), 869-885.

Thornton, P. (1980). Energy absorption by foam filled structures (0148-7191). Retrieved from

Vaughn, N. A. (2007). Design-Expertآ® software. Stat-Ease, Inc, Minneapolis, MN.

Yamada, Y., Banno, T., Xie, Z., & Wen, C. (2005). Energy absorption and crushing behaviour of foam-filled aluminium tubes. Materials transactions, 46(12), 2633.

Zarei, H. R., & Kröger, M. (2006). Multiobjective crashworthiness optimization of circular aluminum tubes. Thin-Walled Structures, 44(3), 301-308. doi:10.1016/j.tws.2006.03.010