Sensitivity Analysis in the QUALIFLEX and VIKOR Methods

Alireza Alinezhada,*, Nima Esfandiarib

a Assistant Professor, Department of industrial & Mechanical engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran.
b MSc, Department of industrial & Mechanical engineering, Islamic Azad University, Qazvin Branch, Qazvin, Iran.

Received 12 April, 2011; Revised 19 May, 2011; Accepted 22 Aug, 2011

Abstract

The sensitivity analysis for multi-attribute decision making (MADM) problems is important for two reasons: First, the decision matrix as the source of the results of a decision problem is inaccurate because it sorts the alternatives in each criterion inaccurately. Second, the decision maker may change his opinions in a time period because of changes in the importance of the criteria and in the policy of the organization over time. This in turn makes problem solving really time-consuming. Therefore, the best solution is to do sensitivity analysis.

In this regard, this paper considers a sensitivity analysis in the QUALIFLEX method which is a compromise ranking method used for multi-criteria decision making (MCDM).

Keywords: Sensitivity Analysis; QUALIFLEX, VIKOR; Multi-criteria Decision Making; Multi-attribute Decision Making.

1. Introduction

Generally, as organizations have limited resources for fulfilling their goals, managers should always make important decisions regarding selecting the best option among different alternatives. Simple examples include deciding about what to buy, how to arrive to a place, where to go, and whom to employ. Decisions are made about various issues from logistics management, customer relationship management, marketing to production planning.

The process of decision making involves complications. Specifically, decision makers sometimes should deal with multi-attribute decision making (MADM) problems. MADM refers to making preference decision over the available alternatives that are characterized by multiple, usually conflicting, attributes. Inter and intra-attribute comparisons between alternatives enable decision makers to make the final decision (Lu, 2007).

Mathematically, a typical MADM method can be formulated as follows:

\[
\begin{align*}
\text{Max}(\text{Min}) & \ A_1, A_2, \ldots, A_m \\
\text{s. t.} & \ C_1, C_2, \ldots, C_n
\end{align*}
\]

(1)

Where \(A = (A_1, A_2, \ldots, A_m) \) denotes \(m \) alternatives and \(C = (C_1, C_2, \ldots, C_n) \) represents \(n \) attributes (often called criteria) for characterizing a decision situation. The select here is normally based on maximizing a multi-attribute value (or utility) function elicited from the stakeholders.

The basic information involved in this model can be expressed by this matrix:

\[
D = \begin{bmatrix}
A_1 & A_2 & \cdots & A_m \\
\begin{bmatrix}
x_{11} & x_{12} & \cdots & x_{1n} \\
x_{21} & x_{22} & \cdots & x_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
x_{m1} & x_{m2} & \cdots & x_{mn}
\end{bmatrix}
\end{bmatrix}
\]

where \(A_1, A_2, \ldots, A_m \) are alternatives from which decision makers choose; \(C_1, C_2, \ldots, C_n \) are attributes with which alternative performances are measured and \(x_{ij} \) \(i = 1, \ldots, m, j = 1, \ldots, n \), is the rating of alternative \(A_i \) with respect to attribute \(C_j \); and \(W_j \) is the weight of attribute \(C_j \).

Alternatives, Criteria and weights are the three important factors in a MADM method. As weights of criteria are very important, any change in the weighting made by the decision maker can change the ranking of alternatives. There are several methods for solving MADM problems. The difference between them lies in the approach to omitting alternatives.

The outline of the present paper is as follows: an introduction to the QUALIFLEX and VIKOR methods is presented in section 2, the sensitivity analysis of the QUALIFLEX and VIKOR methods is discussed in section 3, numerical examples are provided in section 4 and finally section 5 presents conclusions.

*Corresponding Author E-mail: alinezhad@qiau.ac.ir
2. Introduction to the Methods

2.1. The QUALIFLEX Method

The starting point of QUALIFLEX (Paelinck, 1976), (Paelinck, 1997) was a generalization of Jacquet Lagrèze’s permutation method (Guigouet, 1973). The QUALIFLEX method is based on the evaluation of all possible rankings (permutations) of alternatives under consideration. It is based on the comparisons among the comprehensive rankings of the alternatives and evaluations of alternatives according to each criterion from family F (Impact Matrix). For each couple of alternatives of permutations, a concordance and discordance index should be computed which reflects the concordance and discordance of their ranks and their evaluation preorder from the impact matrix. This index is firstly computed at the level of single criterion, and then at a comprehensive level with respect to all possible rankings. We try to identify the permutation whose ranking best reflects the most compromise between the two preorders according to each criterion from F and multi-criteria evaluation table.

Given the set of alternatives A, the concordance/discordance index for each couple of alternatives (a, b), $a, b \in A$, at the level of preorder according to the criterion $g_j \in F$ and the ranking corresponding to the K^h permutation is:

$$I_{jk}(a, b) = \begin{cases} 1 & \text{if there is concordance} \\ 0 & \text{if there is aequo} \\ -1 & \text{if there is discordance} \end{cases}$$

The comprehensive concordance/discordance index for the K^h permutation is:

$$I_k = \sum_{a, b \in A} I_{jk}(a, b).$$

The number of permutations is perm_n, where $m=|A|$. The best compromise corresponds to the permutation that maximizes I_k. (Martel et al. 2005)

2.2. The VIKOR Method

The VIKOR method was developed for multi-criteria optimization of complex systems by Opricovic in 1998. It determines the compromise ranking-list, the compromise solution, and the weight stability intervals for the preference stability of the compromise solution obtained from the initial (given) weights. This method focuses on ranking and selecting from a set of alternatives in the presence of conflicting criteria. It introduces the multi-criteria ranking index based on the particular measure of “closeness” to the “ideal” solution (Opricovic et al., 2004).

The VIKOR method involves the following steps ((Martel et al. 2005), (16)):

Step 1. Determine the normalized Decision Matrix

The normalized decision matrix can be expressed as follows:

$$F = \left[f_{ij}\right]_{m\times n}$$

Where $f_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{n}x_{ij}^2}}$, $i=1,...,m$, $j=1,...,n$ and x_{ij} is the performance of alternative A_j with respect to the jth criterion.

Step 2. Determine the ideal and negative ideal solutions

The ideal solution A^+ and negative ideal solution A^- are as follows:

$$A^+ = \left[\max_{j=1,...,n} f_{ij} \mid j \in J \right]$$

$$A^- = \left[\min_{j=1,...,n} f_{ij} \mid j \in J \right]$$

Where $J = \{j = 1, 2, ..., n \mid f_{ij}, a larger respond is desired\}$ and $J^- = \{j = 1, 2, ..., n \mid f_{ij}, a smaller respond is desired\}$.

Step 3. Calculate the Utility and the Regret measure

The utility measure and the regret measure for each alternative are:

$$S_i = \sum_{j=1}^{n} w_j \times (f_{ij}^+ - f_{ij})/(f_{ij}^+ - f_{ij}^-)$$

$$R_i = \max \left\{w_j \times (f_{ij}^- - f_{ij})/(f_{ij}^+ - f_{ij}^-) \right\}$$

Where S_i represents the utility measure, R_i represents the regret measure, and w_j is the weight of the jth criterion.

Step 4. Calculate the VIKOR index

The VIKOR index can be expressed as follows:

$$Q_i = v \left[\frac{S_i - S^-}{S^+ - S^-}\right] + (1 - v) \left[\frac{R_i - R^+}{R^+ - R^-}\right]$$

Where Q_i represents the ith alternative VIKOR value, $I=1,...,m$; $S^+ = \min_i S_i$, $S^- = \max_i S_i$, $R^+ = \min_i R_i$, $R^- = \max_i R_i$.

And v is the weight of the maximum group utility and usually set to 0.5 (Kacker, 1985 and Opricovic, 1994).

Step 5. Rank the order of preference

The alternative with the smallest VIKOR value is the best solution.
3. Sensitivity Analysis

The literature on sensitivity analysis began with Evans (Evans, 1984). He focused on the sensitivity of an optimal decision to changes in the probabilities of the states of nature and the development of "confidence spheres" to bound arbitrary parametric changes in the probability vector. Then Schneller and Spicaras (1985) corrected the closed-form distance formulae and showed it was easily derived from Evans’ data. Moreover, Isaacs (1963) explored the general question of sensitivity to subjective probability estimates and derived an analytical representation of sensitivity. In some other studies, problems of applying sensitivity analyses were explored and methods were also suggested for resolving conflict of choice under conditions of high sensitivity. Barron and Schmidt (1998) presented two simple computational procedures for sensitivity analysis of additive multi-attribute value models that yield variations in attribute weights (scaling constants). They developed the two methods of entropy-based and least squares procedure. Rios and French (1991) also introduced a framework for sensitivity analysis in multi-objective decision making within a Bayesian context. Rios and Salhi (2003) investigated an opportunistic approach aimed at reducing the number of optimization problems solved in the original framework and an alternative framework based on distance analysis. Triantaphyllou and Sanchez (1997) developed a methodology for performing sensitivity analysis on the weights of the decision criteria and the performance values of the alternatives expressed in terms of the decision criteria.

3.1. Sensitivity Analysis of the Present Study

In this paper, we use weight vector \(W = [w_1, w_2, ..., w_n] \) and change weight of the \(k \)th criterion \(w'_k \). Then we find the impact of this change on the other weights \(W' = [w'_1, w'_2, ..., w'_n] \) and the final score \(P' \) of the VIKOR alternatives.

We assume that the total weights are normalized and the total amount of the weights is equal to \(1 \) if \(\sum_{j=1}^{n} w_j = 1 \).

Theorem 1. In an MADM model if the weight of the \(k \)th criterion changes with the amount of \(\Delta_k \), the weight of other criteria will change with the amount of \(\Delta_k \) as follows:

\[
\Delta_j = \frac{\Delta_kw_j}{w_k - 1} \quad j = 1, 2, ..., n, j \neq k
\]

Proof. The new weights of the criterion \(k \) \(w'_k \) and the weights of other criteria \(w'_j \) are given as:

\[
w'_k = w_k + \Delta_k
\]

\[
w'_j = w_j + \Delta_j \quad j = 1, 2, ..., n, j \neq k
\]

(13)

When \(\sum_{j=1}^{n} w_j = 1 \), we will have:

\[
\sum_{j=1}^{n} w'_j = \sum_{j=1}^{n} w_j + \sum_{j=1}^{n} \Delta_j = \sum_{j=1}^{n} \Delta_j = 0
\]

Then:

\[
\Delta_k = -\sum_{j=1}^{n} \Delta_j
\]

If we assume \(\Delta_j = \frac{\Delta_kw_j}{w_k - 1} \), the following formulae is correct:

\[
\Delta_k = -\sum_{j=1}^{n} \Delta_j \Rightarrow -\Delta_k = \sum_{j=1}^{n} \Delta_j = \sum_{j=1}^{n} \frac{\Delta_kw_j}{w_k - 1}
\]

\[
= \Delta_k \sum_{j=1}^{n} \frac{w_j}{w_k - 1} = \frac{\Delta_k}{w_k - 1}(1 - w_k)
\]

\[-\Delta_k
\]

Conclusion. If the weight of criterion \(k \) changes to \(w'_k \), the weights of other criteria \(w'_j \) change as follows:

\[
w'_j = w_j + \Delta_j = w_j + \frac{\Delta_kw_j}{w_k - 1} = \frac{w_j(w_k - 1) + \Delta_kw_j}{w_k - 1}
\]

\[
\Rightarrow w'_j = \frac{w_j(w_{j-1} + \Delta_kw_j)}{w_k - 1} \quad (14)
\]

Finally, the values of \(w'_j \) for two conditions of \(j \neq k \) and \(j = k \) will be as follows:

\[
w'_j = \begin{cases}
\frac{w_j + \Delta_k}{w_k - 1} & \text{if } j = k \\
\frac{w_j}{w_k - 1} & \text{if } j \neq k
\end{cases}
\]

(15)

3.2. The Use of Sensitivity Analysis in the VIKOR Method

We introduce the VIKOR distance as follows:

\[
d_{ij} = f_i - f_{ij}
\]

We want to find the amount of changes in the final scores of the attributes as well as the final scores of the attributes after changing \(\Delta_k \) of the weight of criterion \(k \).

Theorem 2. In a VIKOR multi-attribute decision making model, if the weight of the criterion \(k \) changes with the amount of \(\Delta_k \), the utility measure will be as follows:

\[
S_{i'} = \sum_{j=1}^{n} w'_j \times d_{ij} = \sum_{j=1}^{n} \frac{(1 - w_k - \Delta_k)w_j}{1 - w_k}
\]

\[
+ \left(\frac{w_k}{1 - w_k} \right) \times d_{ij}
\]

\[
= \left(\frac{(1 - w_k - \Delta_k)w_j}{1 - w_k} \right) \sum_{j=1}^{n} w_j \times d_{ij} + \Delta_k \times d_{ij}
\]

\[
= \left(\frac{(1 - w_k - \Delta_k)w_j}{1 - w_k} \right) \times \sum_{j=1}^{n} w_j \times d_{ij} + \Delta_k \times d_{ij}
\]

\[
\Rightarrow S_{i'} = \left(1 - \frac{\Delta_k}{1 - w_k} \right) \times S_i + \left(\frac{\Delta_k}{1 - w_k} \right) \times d_{ij}
\]

(16)

R will be exactly the same as **S**:

\[
R_{i}' = \left(1 - \frac{\Delta_k}{1 - w_k} \right) \times R_i + \left(\frac{\Delta_k}{1 - w_k} \right) \times d_{ij}
\]

(17)
Finally, the value of Q_i will change.

3.3. The Use of Sensitivity Analysis in the QUALIFLEX Method

In the QUALIFLEX method, we use the weight vector in the final step of problem solving so that just with using new weights, new permutations are provided and the result of the best alternative will change, too. The following numerical example shows the procedure.

4. Numerical Examples

4.1. The QUALIFLEX Numerical Example

A manager wants to decide between three alternatives for building a dam. Each alternative has designated a suitable site for building the dam. Yet there are differences between the attributes which can lead the manager to choose the best alternatives. The attributes are costs, capacity, and strength. The importance of the site to choose the best alternatives. The attributes are costs, capacity, and strength. The importance of the site to choose the best alternatives.

Table 1. Decision Matrix

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1 Cost</td>
<td>A_1</td>
</tr>
<tr>
<td>f_2 Strength</td>
<td>Good</td>
</tr>
<tr>
<td>f_3 Capacity</td>
<td>32000</td>
</tr>
</tbody>
</table>

Based on the above information, 3! Permutations are possible:

- $per_1 = A_1 > A_2 > A_3$
- $per_2 = A_2 > A_1 > A_3$
- $per_3 = A_2 > A_3 > A_1$
- $per_4 = A_3 > A_2 > A_1$
- $per_5 = A_3 > A_1 > A_2$
- $per_6 = A_1 > A_3 > A_2$

Thus, the rank evaluation of the alternatives is as follows in Table 2.

Table 2. Rank evaluation of alternatives

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Alternatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1 Cost</td>
<td>A_1</td>
</tr>
<tr>
<td>f_2 Strength</td>
<td>2</td>
</tr>
<tr>
<td>f_3 Capacity</td>
<td>1</td>
</tr>
</tbody>
</table>

In this example, the concordance and discordance values for attributes g_1 and Per_i are calculated as follows:

- $per_1 = A_1 > A_2 > A_3$ for g_1:
 - $A_2 < A_1 \rightarrow 1$
 - $A_2 = A_3 \rightarrow 0$
 - $A_3 < A_1 \rightarrow 1$

- $per_2 = A_2 > A_1 > A_3$ for g_2:
 - $A_2 > A_1 \rightarrow 1$
 - $A_2 > A_3 \rightarrow 1$
 - $A_3 < A_1 \rightarrow 1$

- $per_3 = A_2 > A_3 > A_1$ for g_3:
 - $A_2 < A_1 \rightarrow 1$
 - $A_2 < A_3 \rightarrow 1$
 - $A_3 < A_1 \rightarrow 1$

Here, the concordance and discordance indices for the permutations index are presented in Table 3.

Table 3. The concordance/discordance indices

<table>
<thead>
<tr>
<th>Criteria</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>per_1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>per_2</td>
<td>0</td>
<td>3</td>
<td>-1</td>
</tr>
<tr>
<td>per_3</td>
<td>-2</td>
<td>1</td>
<td>-3</td>
</tr>
<tr>
<td>per_4</td>
<td>-2</td>
<td>-1</td>
<td>-3</td>
</tr>
<tr>
<td>per_5</td>
<td>0</td>
<td>-3</td>
<td>1</td>
</tr>
<tr>
<td>per_6</td>
<td>2</td>
<td>-1</td>
<td>3</td>
</tr>
</tbody>
</table>

Now assuming that the weights of attributes are equally 1/3, the permutations are as follows:

- $per_1 = 4/3$
- $per_2 = 2/3$
- $per_3 = -4/3$
- $per_4 = -2$
- $per_5 = -2/3$
- $per_6 = 4/3$

Finally, since permutations 1 and 6 are greater than others, alternative A_1 is the best alternative.

Sensitivity Analysis of the QUALIFLEX Numerical Example

Here, a sensitivity analysis is done for the above numerical example. Assuming that the weight of criterion 1 changes to 0.5($w_1 = 0.5$), the other weights of the criteria are as follows:

- $w_2' = \frac{1}{2} \times \left(\frac{1}{3} - 1\right) + \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} = \frac{1}{4} = 0.25$

- $w_3' = \frac{1}{2} \times \left(\frac{1}{3} - 1\right) + \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} = \frac{1}{4} = 0.25$

Then the final permutations will be as follows:

- $per_1 = 3/2$
The regret measures of $w_i = 0 \rightarrow 0\Rightarrow w_i = 0.2 \rightarrow 0.5$.

Then w_i, w_j and w_i' will be as follows:

$S_i' = 0.2 \times \frac{1 - 1}{5} + 0.8 \times \frac{3000 - 4500}{3000 - 4500} = 0.8$
$S_j' = 0.2 \times \frac{2 - 1}{5} + 0.8 \times \frac{3750 - 4500}{3000 - 4500} = 0.45$
$S_k' = 0.2 \times \frac{5 - 1}{5} + 0.8 \times \frac{4500 - 4500}{3000 - 4500} = 0.2$

The regret measures of R_i', R_j' and R_k' are as follows:

$R_i' = \max(0, 0.8) = 0.8$
$R_j' = \max(0.05, 0.4) = 0.4$
$R_k' = \max(0.2, 0) = 0.2$

Finally, the VIKOR indices will be as follows:

$Q_i' = 0.5 \times \frac{0.8 - 0.8}{0.2 - 0.8} + 0.5 \times \frac{0.8 - 0.8}{0.2 - 0.8} = 0$
$Q_j' = 0.5 \times \frac{0.4 - 0.8}{0.2 - 0.8} + 0.5 \times \frac{0.45 - 0.8}{0.2 - 0.8} = 0.625$
$Q_k' = 0.5 \times \frac{0.2 - 0.8}{0.2 - 0.8} + 0.5 \times \frac{0.2 - 0.8}{0.2 - 0.8} = 0.5$

$Q_i' < Q_j' < Q_k' \Rightarrow A_1 > A_2 > A_3$

5. Conclusions

Decision making can be categorized into two different categories: Multi-objective decision making problems and MADM problems. In multi-objective decision making problems, decision makers are looking for the solution which has the best results with different objectives, but in MADM problems decision makers choose the best alternative based on different attributes. All MADM problems have a decision matrix which shows alternatives and attributes. Sometimes the attributes are conflicting so that the maximization of one attribute will result in the minimization of other attributes.

In the classical techniques of MADM, it is often assumed that all used data (such as weights of attributes, efficiency of alternatives against attribute etc.) are deterministic, thus final scores or utility of alternatives are obtained by solving MADM. However, in reality data of decision making problems are changing. Therefore, after solving decision making problems, usually a sensitivity analysis must be done for them. In this paper, we developed sensitivity analysis for the QUALIFLEX and VOKOR methods and proposed a method based on changes in the weights.

6. References

